第一性原理计算 V-Al 共掺杂 CrSi₂ 的光电特性

闫万珺1,2 张忠政1 郭笑天1,2 桂 放1 谢 泉2 周士芸1 杨 娇1

¹ 安顺学院电子与信息工程学院,航空电子电气与信息网络工程中心,功能材料与资源化学特色重点实验室, 贵州 安顺 561000

²贵州大学电子信息学院,新型光电子材料与技术研究所,贵州贵阳 550025

摘要 采用第一性原理赝势平面波方法,对 V-Al 共掺杂 CrSi₂ 的几何结构、电子结构和光学性质进行了理论计算, 并与未掺杂、V、Al 单掺杂 CrSi₂ 的光电性能进行了比较。结果表明:V-Al 共掺杂会增大 CrSi₂ 的晶格常数 *a* 和 *b*, 体积相应增大。V-Al: CrSi₂ 是 p 型间接带隙半导体,带隙宽度为 0.256 eV,介于 V、Al 单掺杂 CrSi₂ 之间;费米能 级附近的电子态密度主要由 Cr-3d、V-3d、Si-3p、Al-3p 轨道杂化构成。与未掺杂的 CrSi₂ 相比,V-Al: CrSi₂ 的静态 介电常数和折射率增大,ε_i(ω)在低能区有一个新的跃迁峰。在光子能量为 5 eV 附近,ε_i(ω)的跃迁峰强度大幅减 弱,吸收系数和光电导率明显降低,吸收边略有红移,平均反射效应减弱。V 的掺入会削弱 Al 单掺杂的电子跃迁, V-Al 共掺杂可以对 CrSi₂ 的能带结构和光学性质进行更精细的调节。

关键词 材料; V-Al 共掺杂 CrSi₂; 电子结构; 光学性质; 第一性原理

中图分类号 O474;O472+.4 文献标识码 A doi: 10.3788/AOS201434.0416002

First Principles Calculation on the Photoelectric Properties of V-Al co-Doped CrSi₂

Yan Wanjun^{1,2} Zhang Zhongzheng¹ Guo Xioatian^{1,2} Gui Fang¹

Xie Quan² Zhou Shiyun¹ Yang Jiao¹

¹ College of Electronic and Information Engineering, Key Laboratory of Functional Materials and Resources Chemical, Engineering Center of Avionics Electrical and Information Network, Anshun University, Anshun, Guizhou 561000, China ² Institutes of New Type Optoelectronic Materials and Technology, College of Electronic and Information,

Guizhou University, Guiyang, Guizhou 550025, China

Abstract Based on the first principles pseudo-potential plane-wave method, geometrical structure, electronic structure, and optical properties of V-Al co-doped CrSi_2 are calculated. The photoelectric properties of un-doped CrSi_2 , and co-doped with V and Al, and single-doped with V or Al are compared in detail. The results show that: co-doped with V and Al, the lattice constant a, b, and the volume of CrSi_2 is increased. V-Al: CrSi_2 is a p-type indirect semiconductor, and the energy gap is 0.256 eV, which is between the gap value of CrSi_2 with single-doping V or Al. The density of states near the Fermi energy is mainly composed of Cr-3d, V-3d, Si-3p and Al-3p orbital hybridization. Compared with pure CrSi_2 , the static dielectric constant and the refractive index of CrSi_2 are increased with co-doping of V and Al. A new transition peak of $\varepsilon_i(\omega)$ is appeared at the lower energy region. Near 5 eV, the transition peak intensity of $\varepsilon_i(\omega)$, the absorption coefficient, and the photoconductivity is decreased, respectively. The absorption edge generates a red shift, and the average reflection effect is decreased. Doping with V will weaken the electron transition in Al single-doped CrSi_2 . V-Al co-doped can critically regulate the band structure and the optical properties of CrSi_2 .

Key words materials; V-Al co-doped $CrSi_2$; electronic structure; optical properties; first principles OCIS codes 160.4670; 160.4760; 160.6000

收稿日期: 2013-09-22; 收到修改稿日期: 2013-11-05

基金项目:国家自然科学基金(61264004)、贵州省科技厅自然科学基金(20102001)、贵州省教育厅科研项目(2012056, 2011278)

作者简介: 闫万珺(1978—), 女, 博士研究生, 副教授, 主要从事电子功能材料方面的研究。

E-mail: yanwanjun7817@163.com

导师简介:谢 泉(1964—),男,博士,教授,主要从事电子功能材料方面的研究。E-mail: qxie@gzu. edu. cn

1 引 盲

铬硅化合物 CrSi, 由对环境无污染的 Cr 元素 和 Si 元素构成,是一种新型环境友好半导体光电子 材料。CrSi2 与硅衬底之间的晶格错配度在 CrSi2 (0001)/Si(111)方向小干 0.3%^[1-2],这使得在硅表 面外延生长 CrSi2 并获得 Si/CrSi2 异质结成为可 能。因此,CrSi2 有望在硅基光电子器件领域得到广 泛应用[3]。对光电子材料而言,如何调控其能带结 构和光学特性已成为当前材料科学和凝聚态物理领 域所关注的重要问题。杂质元素的掺入会对晶体中 原子的位置和晶胞体积产生影响,进而影响材料的 电子结构并改变其光电性能。因此,掺杂是调制及 改善材料光电性能的重要方法。在掺杂 CrSi₂ 的电 学性质方面, Nishida 等^[4]和 Hohl 等^[5]分别对 Mn 和 V 掺杂 CrSi₂ 的半导体性质进行过实验研究。近 年来,Pan 等对 V^[6]和 Al^[7]分别掺杂 CrSi₂ 的热电 性质进行了报道。本课题组对单个 Mn、V 原子及 不同浓度的 Al 原子掺杂 CrSi₂ 的光电特性进行了 研究[5-7]。目前,尚未见到同时掺入两种不同原子 对 CrSi₂ 光电特性影响的报道。为了比较共掺杂与 单掺杂的异同,本文采用第一性原理赝势平面波方法,对 V-Al 共掺杂 CrSi₂ 和相同掺杂浓度下 V、Al 单掺杂 CrSi₂ 的电子结构和光学性质进行了全面的研究,这对揭示不同掺杂方式对其光电性质的调制 机理有重要的意义。第一性原理法是目前多种材料 光电特性计算的常用方法^[5-15]。

2 模型与方法

采用的计算模型为 CrSi₂ (a = b = 0.4428 nm, c=0.6368 nm, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ [1]}$) 2×2×1 的 超晶胞,即将原胞的 *a* 和 *b* 方向各扩展一倍,*c* 方向 保持不变,获得总原子数为 36 个的 CrSi₂ 超晶胞。 根据所选用 CrSi₂ 超晶胞的对称性,共有三种不等 价的 V-Al 共掺杂 CrSi₂模型,分别用 V-Al 1, V-Al 2, V-Al 3 表示。分别用 2 个 V 原子或 Al 原子置 换 2 个 Cr 或 Si 原子(选取对称位置上的原子进行 置换),得到 V、Al 单掺杂 CrSi₂ 模型。V、Al 单掺 杂 CrSi₂ 和 V-Al 共掺杂 CrSi₂ 超晶胞的模型如图 1 所示。

图 1 单掺杂和共掺杂的五种超晶胞结构图。(a) 2V 掺杂模型;(b) 2Al 掺杂模型;(c) V-Al 1 掺杂模型;掺杂模型; (d) V-Al 2(e) V-Al 3 掺杂模型

Fig. 1 Five kinds of supercell (2×2×1) of single doped and co-doped CrSi₂. (a) 2V-doped; (b) 2Al-doped; (c) V-Al 1; (d) V-Al 2; (e) V-Al 3

本文采用 CASTEP^[16] 软件包进行计算,采用 GGA-PBE 泛函^[17] 描述交换关联能,用平面波展开 价电子波函数,用超软赝势^[18] 处理离子实与电子间 的相互作用。经收敛性测试,平面波的截断能设定 为 300 eV,采用 3×5×3 的 k 点网格,总能量收敛 精度为 1 meV/atom。将五种掺杂模型进行几何结 构优化,找出共掺杂结构中最稳定的模型,然后对其 进行光电性质计算,并与未掺杂和单掺杂 CrSi₂ 的 光电特性进行对比分析。

3 计算结果及分析

3.1 几何结构

表1为未掺杂 CrSi₂ 和掺杂 CrSi₂ 的晶格常数 及系统总能量。由表1可知,经几何优化 CrSi₂ 的 晶格常数与实验值相符。V、Al 单掺杂和 V-Al 共 掺杂后,晶格常数 *a* 和 *b* 增大,*c* 略减,晶格体积相 应增大。查元素周期表可知,Cr、V、Si和 Al 原子的 共价半径分别为 0.118、0.122、0.111、0.118 nm,由 于 V和 Al 的共价半径均比 Cr和 Si的大,分别或同 时用 V、Al 原子置换 Cr、Si 原子后,原子间距增大,体系的晶格常数和体积相应增大。

表 1 未掺杂 CrSi₂ 和掺杂 CrSi₂ 的晶格常数和总能量 Table 1 Un-doped and doped lattice constants and total energy of CrSi₂

Sample	a /nm	b/nm	c/nm	$V \ / \mathrm{nm}^3$	Energy /eV
Un-doped CrSi ₂ (experimental)	0.8856	0.8856	0.6368	0.4326	—
Un-doped CrSi ₂ (calculated)	0.8853	0.8854	0.6385	0.4334	-32199.362
2V-doped CrSi ₂	0.8928	0.8912	0.6363	0.4382	-31217.716
V-Al 1	0.8925	0.8929	0.6370	0.4394	-31657.414
V-Al 2	0.8931	0.8912	0.6364	0.4386	-31657.374
V-Al 3	0.8929	0.8912	0.6368	0.4386	-31657.464
2Al-doped CrSi ₂	0.8933	0.8918	0.6367	0.4391	-32097.058

从表1可以看出,三种不同位置共掺杂 CrSi₂ 的体系均是稳定的。掺杂位置对系统总能量的影响 较小,最大能量差仅为0.09 eV,三种共掺杂情况下 结构最稳定的是 V-Al 3。此外,经测试计算,共掺 杂时掺杂位置的不同对电子结构的影响小于单掺杂 对电子结构的影响。因此,以下对共掺杂光电性质 的计算和分析均采用 V-Al 3 模型。

3.2 电子结构

为了便于比较掺杂前后的变化,计算能带结构 时,第一布里渊区中高对称 k 点选择了同一设置,费 米能级 E_F 设为能量零点。图 2 为未掺杂 CrSi₂ 和 V-Al 3 在费米能级附近的能带结构和电子分波态 密度。从图 2(a)可知,未掺杂 CrSi₂ 在价带顶的 L 点到导带底的*M* 点之间表现为间接带隙半导体,禁 带宽度为 $E_g = 0.38 \text{ eV}$,与已有的计算^[19-20] 和实 验^[21-22]结果相吻合;价带顶和导带底的电子态密度 主要由 Cr-3d 层电子和少量 Si-3p 层电子贡献。 CrSi₂ 的晶胞中,一个 Cr 原子与 6 个 Si 原子配位, 形成了 CrSi₆ 的八面体结构。由晶体场理论,Cr-3d 轨道分裂为能量较高且两度简并的 $e_g(d_{z^2}, d_{x^2-y^2})$ 态和能量较低且三度简并的 $t_{2g}(d_{xy}, d_{yz}, d_{zz})$ 态。 在 CrSi₂ 的八面体晶场中,Cr-3d 轨道与 Si-3p 轨道 交叠耦合,使 Cr-3d 轨道分裂成 e_g 态和 t_{2g} 态两部 分,这两部分分别与 Si-3p 发生轨道杂化形成 CrSi₂ 的导带和价带。

图 2 CrSi₂和 V-Al 3费米能级附近的能带结构和分波态密度(PDOS)

Fig. 2 Band structure and partial density of states (PDOS) of CrSi2 and V Al-3 near the Fermi energy

由图 2(b)可知,掺杂 V、Al 后,能带结构变得 复杂,导带明显变窄且有所平缓。价带顶在 A 点处 取得最大值 0.315 eV,导带底在 G 点处取得最小值 0.571 eV,带隙宽度为 0.256 eV,比未掺杂 CrSi₂ 的 带隙减小了 0.124 eV;Cr-3d、V-3d 层电子与 Si-3p、 Al-3p 层电子发生杂化,使 Cr-3d 和 V-3d 轨道分裂 成 eg 态和 t_{2g}态两部分。V-Al 3 的价带主要由 Cr3d、V-3d 的 t_{2g} 轨道与 Si-3p、Al-3p 层电子杂化形成,导带主要由 Cr-3d、V-3d 的 e_g 轨道与 Si-3p、Al-3p 层电子杂化形成。由于参与计算的 V 的价电子为 $3s^2 3p^6 3d^3 4s^2$,Cr 的价电子为 $3s^2 3p^6 3d^5 4s^1$,V 的 3d 层比 Cr 的 3d 层少 2 个价电子,V 的 4s 层比 Cr 的 4s 层多 1 个价电子,Al 的价电子为 $3s^2 3p^1$,Si 的 价电子为 $3s^2 3p^2$,Al 的 3p 层比 Si 的 3p 层少 1 个价

电子。因此,V-Al 共掺杂使得价电子数减少,空穴 载流子增多,费米能级处原被占据的能带变成空带, 使得费米能级向下移入价带中,V-Al 3 为 p 型半导 体。此外,由于电子从价带(第 131 条能带及更低能 带)到导带(第 132 条能带及更高能带)的转移需要 跨越能隙,虽然掺杂后的费米能级穿过了能带,但是 CrSi。并没有转变为金属,仍然表现出半导体性质。

为了比较共掺杂和单掺杂对 CrSi₂ 能带结构的 影响,图 3 给出了 V-Al 共掺杂和 V、Al 单掺杂 CrSi₂ 费米能级附近的能带结构。从图 3 可以看出, 在相同的掺杂浓度下,2V 掺杂 CrSi₂ 的带隙最小 (0.168 eV),V-Al 共掺杂的情况次之(0.256 eV), 而 2Al 单掺杂 CrSi₂ 的带隙最大(0.294 eV)。说明 V-Al 共掺杂可以获得介于单掺杂 V 原子或 Al 原 子之间的带隙值,能够实现对CrSi₂能带结构更精 细的调节。表 2 列出了三种掺杂情况下价带顶和导带底的高对称点的能量特征值。

图 3 V-Al 共掺杂与 V、Al 单掺杂 CrSi₂ 费米能级 附近的能带结构

Fig. 3 Band structures of V-Al co-doped and V, Al single-doped CrSi₂ near the Fermi energy

表 2 未掺杂 CrSi₂ 和掺杂 CrSi₂ 的价带顶和导带底的高对称 k 点的特征能量值

Table 2 Eigenvalues (eV) of VBM and CBM of un-doped and doped $CrSi_2$ at high symmetry k point

and band gap valu

		G	Α	Н	М	L	$E_{ m g}/{ m eV}$
Un-doped	VBM (eV)	-0.455	-0.315	-0.263	-0.358	0	0.379
	CBM (eV)	1.360	1.195	0.574	0.379	0.536	
2V	VBM (eV)	-0.118	0.350	0.096	-0.204	0.133	0.168
	CBM (eV)	0.518	0.639	0.749	0.741	0.709	
2Al	VBM (eV)	-0.082	0.276	0.042	-0.210	0.049	0.294
	CBM (eV)	0.570	0.718	0.773	0.789	0.812	
V-Al 3	VBM (eV)	-0.088	0.315	0.137	-0.219	0.134	0.256
	CBM (eV)	0.571	0.677	0.752	0.763	0.751	

3.3 光学性质

光学常数是用来表征固体宏观光学性质的物理 量,其中,折射率 $n(\omega)$ 和消光系数 $\kappa(\omega)$ 是两个基 本光学常数,复介电函数 $\varepsilon[\varepsilon_r(\omega),\varepsilon_i(\omega)]$ 和复光电 导率 $\sigma[\sigma_r(\omega),\sigma_i(\omega)]$ 都与 (n,κ) 有关,这些光学常 数之间通过克喇末-克朗尼格(KK)变换联系。只 需测量一次材料的反射光谱,所有光学常数都可通 过 KK 变换得到^[23]。

从图 3 可知, V-Al 共掺杂和 V、Al 单掺杂 CrSi₂ 的能带结构非常相似。由于材料的光学性质 由其能带结构决定,相似的能带结构必然有相似的 光学性质。因此,以下光学性质的讨论主要以 V-Al 共掺杂 CrSi₂ 和未掺杂 CrSi₂ 的光学性质比较为主, 而 V、Al 单掺杂对 CrSi₂ 光学性质的影响不再一一 赘述,只比较单掺杂与共掺杂的异同。

3.2.1 复介电函数

介电函数反映了带间电子跃迁与电子结构的关系,体现了能带结构和光谱信息之间的关系,是非常

重要的光学常数。图 4 为 $CrSi_2$ 和掺杂 $CrSi_2$ 复介 电函数的实部 $\varepsilon_r(\omega)$ 和虚部 $\varepsilon_i(\omega)$ 。

对比掺杂前后的介电函数实部 $\varepsilon_r(\omega)$ 可知, V-Al 3的静态介电常数 ε_r(0)的值 43.03 比 CrSi₂ 的 值 29.06 大。在 E < 15 eV 的范围内, CrSi₂ 的 $\epsilon_i(\omega)$ (S_m=0.2)在能量分别为 1.48、4.41、5.07 eV 处有三 个明显介电峰。第一介电峰(E=1.48 eV)来自 Cr-3d 的 t2g轨道到 Cr-3d 的 eg 轨道的 d-d 电子跃迁,其余两 个介电峰来自价带中部到导带的跃迁。V-Al 掺入 后,在能量为0处的电子跃迁来自Cr-3d、V-3d轨道 的 t_{2g} 态到 e_g 态的 d-d 电子跃迁, $\epsilon_i(\omega)$ 在能量为 0.26 eV附近出现了一个新的跃迁峰,对应于价带 顶到导带底的电子跃迁,与计算所得能带结构吻合。 在能量为 1.34 eV 处的第二跃迁峰与 CrSi2 的第一 跃迁峰相比,略向低能方向偏移,且峰值降低,原位 于 4.41 eV 和 5.07 eV 处的两个强峰退化为位于为 2.93 eV 和 6.00 eV 处的两个弱峰。从图 2 可知, 在费米能级附近, V-Al3的价带电子态密度主要由

V-3d 和 Cr-3d 的 t_{2g} 轨道与 Al-3p 和 Si-3p 轨道杂化 形成, Cr-3d 和 V-3d 的电子态密度在-2 eV 附近取 得最大值, 对应于该能量范围($-2.5 \sim -1.5 \text{ eV}$)的 能带结构变得非常复杂, 导致电子从该能带区间跃 迁到导带的几率大幅减少。因此,较高能量范围(~5 eV)的介电峰大幅减弱;此外,由于掺杂后带隙变 窄,因而在低能区出现了新的电子跃迁。

图 4 CrSi₂ 和掺杂 CrSi₂ 的复介电函数。(a)实部;(b)虚部

Fig. 4 Complex dielectric function of $CrSi_2$ and doped $CrSi_2$. (a) Real part ϵ_r ; (b) imaginary part ϵ_i

与 V、Al 单掺杂结果进行对比可知,Al 单掺杂的静态介电常数最大(73.20),V-Al 共掺杂次之(43.03),V 单掺杂最小(42.12)。三种掺杂情况下,介电函数虚部第一峰值从大到小依次为:Al 掺杂、V-Al 共掺杂和 V 掺杂。可见,V 单掺杂与 V-Al 共掺杂 CrSi₂ 的光学性质更接近,V 的掺入会削弱 Al 单掺杂的电子跃迁。从图 2(b)可知,这是由

于 V-3d 电子对 CrSi₂ 的影响比 Al-3p 电子大造成的。

3.2.2 复折射率

由复折射率与复介电函数的关系 $n^2 - \kappa^2 = \varepsilon_r$, $2n\kappa = \varepsilon_i$,可得材料的复折射率 (n,κ) 。图 5 为 CrSi₂ 和掺杂 CrSi₂ 的复折射率 (n,κ) 。

图 5 $CrSi_2$ 和掺杂 $CrSi_2$ 的复折射率。(a) 折射率 n; (b) 消光系数 κ

Fig. 5 Complex refractive index of $CrSi_2$ and doped $CrSi_2$. (a) Refractive index n; (b) extinction coefficient κ

从图 5(a)可以看出, V-Al 3 的折射率 n_0 的值 6.60比 CrSi₂ 的折射率 5.39 大。CrSi₂ 的折射率 n 在 E=1.05 eV 处取得最大值为 6.24, 在 E=3.33 eV 处 取得第二个峰值 4.66, 在 10.86 eV < E < 18.32 eV 时 n 接近于零, 这与反射谱(图 7)中相同能量范围的反 射率接近于 1 相对应, 说明在这一能量范围, CrSi₂ 有 金属反射特性。V-Al 3 的折射率在 1.05 eV 处取得 第一峰值 4.83, 在 5.19~9.26 eV 能量范围取得较 小谷值 0.22~0.31>0, 与反射谱中的反射率接近 70%是对应的, 没有表现出强金属反射特性。消光 系数 κ 是一个表示光能衰减的参量。由图 5(b)可 知, CrSi₂ 的消光系数 κ 在 1.59 eV 和 5.45 eV 处有 两个峰; V-Al 掺入后, V-Al 3 的消光系数 κ 在 0.26 eV处出现一个新的峰, 与 $\varepsilon_2(\omega)$ 的第一峰对 应, 在 1.53 eV 和 3.44 eV 处有两个峰, 原位于 5.45 eV处的强峰大幅减弱, 在 E>3.44 eV 的能量 范围, κ 逐渐减小, 且小于 CrSi₂ 的消光系数。

三种掺杂情况下折射率的大小关系为: $n_{0AI}(8.$ 71) $>n_{0V-AI}(6.60)>n_{0V}(6.53)$,消光系数第一峰值的大小次序依次为:AI 掺杂、V-AI 共掺杂和 V 掺

杂,与介电函数虚部的变化相符。

3.2.3 吸收系数

吸收系数 α 与消光系数 κ 都表示物质的吸收, 其关系为 α=2ωκ/c=4πκ/ $\lambda_0^{[23]}$ 。图 6 为未掺杂 CrSi₂ 和掺杂 CrSi₂ 的吸收系数。从图 6 可以看出,CrSi₂ 的 吸收系数在 1.82 eV 处有一个小峰,在 6.03 eV 处取得 最大值 4.14×10⁵ cm⁻¹,在 E>6.03 eV 后,吸收系数逐 渐减小到零。V-Al 3 的吸收系数在 1.93 eV 处有一个 小峰,在 4.45 eV 处取得最大值 1.46×10⁵ cm⁻¹。与未 掺杂 CrSi₂ 相比,吸收边略有红移,吸收系数在 0~ 3.57 eV的能量范围内略大于 CrSi₂,在 E>3 eV 的 能量范围均小于 CrSi₂,且吸收系数的最大值降为未 掺杂时的 1/3。三种掺杂情况下,最大吸收系数依 次为 α_V (1.50×10⁵ cm⁻¹), α_{V-Al} (1.46×10⁵ cm⁻¹) 和 α_{Al} (1.43×10⁵ cm⁻¹)。

图 6 CrSi₂ 和掺杂 CrSi₂ 的吸收谱

Fig. 6 Absorption of CrSi_2 and doped CrSi_2

3.2.4 反射谱

材料的反射率可以从反射率 R 与复折射率(n, κ)的关系 R = $\frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2}$ 得到。图 7 为 CrSi₂ 和 掺杂 CrSi₂ 的反射谱。由图 7 可知, CrSi₂ 发生反射 的 主要能量范围为10.86~18.32eV,反射率接近 1,相应能量范围的折射率的值接近零,说明 CrSi₂ 在该能量范围内具有金属反射特性。共掺杂后,V-Al 3 的反射主要发生在 5.19~9.26 eV 能量范围 内,最大反射率小于 70%,平均反射效应明显减弱, 金属反射特性下降。三种掺杂情况下反射率从大到 小依次为:V 掺杂、V-Al 共掺杂和 Al 掺杂,与消光 系数和介电函数虚部相对应。

图 7 CrSi₂ 和掺杂 CrSi₂ 的反射谱

Fig. 7 Reflectivity of CrSi2 and doped CrSi2

3.2.5 复光电导率

复光电导率的实部 $\sigma_r(\omega)$ 和虚部 $\sigma_i(\omega)$ 分别与 复介电函数的虚部 $\varepsilon_i(\omega)$ 和实部 $\varepsilon_r(\omega)$ 相对应,即: $\sigma_r = \varepsilon_0 \omega \varepsilon_i, \sigma_i = \varepsilon_0 \omega (\varepsilon_r - 1)$ 。图 8 为 CrSi₂ 和掺杂 CrSi₂ 的复光电导率 $\sigma(\omega)$ 。从图 8(a)可知,CrSi₂ 的 光电导率实部 $\sigma_r(\omega)$ 在 1.59、4.45、5.14 eV 处有三 个明显的峰值, $\sigma_r(\omega)$ 的最大值为 17.61。V-Al 3 的 $\sigma_r(\omega)$ 在 E < 1.45 eV 范围略大于未掺杂 CrSi₂ 的 $\sigma_r(\omega)$,在 1.45 eV 处取得最大值 4.08,E > 1.45 eV 光电导率逐渐减小,且小于未掺杂 CrSi₂ 的光电导 率,峰值出现的位置向低能方向移动,原位于 5 eV 附近的光电导率强峰明显减弱,与其他光学性质的 计算结果对应。由图 8(b)可知,V-Al 3 的光电导率 虚 部 $\sigma_i(\omega)$ 的峰强比未掺杂CrSi₂的减弱了许多,且

图 8 CrSi₂ 和掺杂 CrSi₂ 的复光电导率。(a)实部;(b)虚部 Fig. 8 Conductivity of CrSi₂ and doped CrSi₂. (a) Real prat σ_r; (b) image part σ_i

最大峰值出现的位置向低能方向偏移,与计算得到 的介电函数实部相对应。三种掺杂情况下,光电导 率的实部 $\sigma_r(\omega)$ 和虚部 $\sigma_i(\omega)$ 的变化与其他光学性 质的结果相对应。

4 结 论

将 $CrSi_2$ 的 2×2×1 超晶胞中的一个 Cr 原子 和一个 Si 原子分别用 V 原子和 Al 原子替代,得到 V-Al 共掺杂 CrSi2 的三种不同置换位置的计算模 型。对 V-Al 共掺杂 CrSi2 的几何结构进行了优化 计算,确定最稳定的结构为 V-Al 3。对 V-Al 3 以 及相同掺杂浓度下 V、Al 单掺杂 CrSi2 的电子结构 和光学性质进行了全面的计算,并与未掺杂,V、Al 单掺杂 CrSi₂ 的光电特性进行了对比分析。V、Al 单掺杂和 V-Al 共掺杂后, CrSi2 费米能级附近的能 带结构非常相似,费米面向下移入价带中,掺杂 CrSi₂为p型半导体, V-Al 共掺杂 CrSi₂的带隙介 于 V、Al 单掺杂 CrSi2 之间;费米能级附近, V-Al 共 掺杂 CrSi₂ 的价带主要由 Cr-3d、V-3d 的 t_{2g}轨道与 Si-3p、Al-3p 层电子杂化形成,导带主要由 Cr-3d、 V-3d 的 eg 轨道与 Si-3p、Al-3p 层电子杂化形成; V-Al 的掺入增大了 CrSi₂ 的静态介电常数 $\varepsilon_r(0)$ 和折 射率 n₀,但光电导率和吸收系数明显降低,吸收边 略有红移,平均反射效应减弱,金属反射特性下降。

参考文献

- 1 V E Borisenko. Semiconducting Silicides [M]. Berlin: Springer-Verlag New York, LLC, 2000.
- 2 N G Galkin, T A Velichko, S V Skripka, *et al.*. Semiconducting and structural properties of CrSi₂ A-type epitaxial films on Si (111) [J]. Thin Solid Films, 1996, 280(1-2): 211-220.
- 3 H Hohl, A P Ramirez, T T M Palstra, *et al.*. Thermoelectric and magnetic properties of Cr_{1-x} V_xSi₂ solid solutions [J]. J Alloys Comp, 1997, 248(1): 70-76.
- 4 I Nishida, T Sakata. Semiconducting properties of pure and Mndoped chromium disilicides [J]. J Phys Chem Solids, 1978, 39 (5): 499-505.
- 5 Y Zhou, Q Xie, W J Yan, *et al.*. First-principles calculation of electronic structure and optical properties of CrSi₂ with doping Mn [J]. Acta Optica Sinica, 2009, 29(10): 2848-2853. 周士芸,谢 泉, 闫万珺,等. 锰掺杂二硅化铬电子结构和光学
- 性质的第一性原理计算[J]. 光学学报,2009,29(10):2848-2853.
- 6 S Y Zhou, Q Xie, W J Yan, et al.. First-principles calculation of the band structure of V-doped CrSi₂ [J]. Journal of Yunnan University, 2009, 31(5): 484-488.
 周士芸,谢 泉,闫万珺,等. V 掺杂 CrSi₂ 能带结构的第1性

原理计算[J]. 云南大学学报(自然科学版), 2009, 31(5): 484-488.

7 Yan Wanjun, Zhou Shiyun, Xie Quan, et al.. Effect of Al doping concentration on electronic and optical properties of CrSi₂ [J]. Acta Optica Sinica, 2012, 32(5): 0516003. 闫万珺,周士芸,谢 泉,等. Al 掺杂浓度对 CrSi₂ 电子结构和 光学性质的影响[J]. 光学学报, 2012, 32(5): 0516003.

- 8 Chen Qian, Xie Quan, Zhao Fengjuan, et al.. First-principles calculations of electronic structure and optical properties of strained Mg₂Si [J]. Chinese Science Bulletin, 2010, 55(21): 2236-2242.
- 9 Zhou Shiyun, Xie Quan, Yan Wanjun, *et al.*. First-principle study on the electronic structure of stressed CrSi₂[J]. Science in China Series G: Physics Mechanics and Astronomy, 2009, 52 (1): 76-81.
- 10 Li Chunxia, Dang Suihu, Zhang Keyan, *et al.*. Influence of pressure effect on CdS electronic structure and optical properties [J]. Acta Optica Sinica, 2011, 31(6): 0616004.
 李春霞, 党随虎,张可言,等. 压力效应对 CdS 电子结构和光学 性质的影响[J]. 光学学报, 2011, 31(6): 0616004.
- 11 Chen Qian, Xie Quan, Yang Chuanghua, et al.. First-principles calculation of electronic structure and optical properties of Mg₂Si with doping [J]. Acta Optica Sinica, 2009, 29(1): 229-235.
 陈 茜,谢 泉,杨创华,等. 掺杂 Mg₂Si 电子结构及光学性质的第一性原理计算[J]. 光学学报, 2009, 29(1): 229-235.
- 12 Zhang Fuchun, Zhang Zhiyong, Zhang Weihu, *et al.*. Firstprinciples calculation of electronic structure and optical properties of AZO (ZnO: Al) [J]. Acta Optica Sinica, 2009, 29(4): 1025-1031. 张富春,张志勇,张威虎,等. AZO (ZnO: Al)电子结构与光学

张富春,张志男,张威虎,等. AZO (ZnO: Al)电子结构与光学 性质的第一性原理计算[J]. 光学学报,2009,29(4):1025-1031.

- 13 Cai Jianqiu, Tao Xiangming, Luo Haijun, et al.. Ab-initio investigation of anisotropic optical properties of Sr₂RuO₄[J]. Acta Optica Sinica, 2010, 30(12): 222-227. 蔡建秋,陶向明,罗海军,等. Sr₂RuO₄各向异性光学性质的第 一性原理研究[J]. 光学学报, 2010, 30(12): 222-227.
- 14 Li Chunxia, Dang Suihu, Han Peide. Vacancies effects on electronic structure and optical properties of CdS [J]. Acta Optica Sinica, 2010, 30(5): 198-204.
 李春霞,党随虎,韩培德. 空位缺陷对 CdS 电子结构和光学性质 的影响[J]. 光学学报, 2010, 30(5): 198-204.
- 15 Yan Waniun, Zhang Chunhhong, Gui Fang, et al.. Electronic structure and optical properties of stressed β-FeSi₂ [J]. Acta Optica Sinica, 2013, 33(7): 0716001.
 闫万珺,张春红,桂 放,等.应力调制下β-FeSi₂ 电子结构及光 学性质 [J]. 光学学报, 2013, 33(7): 0716001.
- 16 M D Segall, J D Lindan Philip, M J Probert, et al.. Firstprinciples simulation: ideas, illustrations and the CASTEP code [J]. J Phys Cond Matt, 2002, 14(11): 2717-2744.
- 17 J P Perdew, K Burkek, M Ernzerhof. Generalized gradient approximation made simple [J]. Phys Rev Lett, 1996, 77(18): 3865-3868.
- 18 D Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys Rev B, 1990, 41 (11): 7892-7895.
- 19 V L Shaposhnikov, A V Krivosheeva, A E Krivosheev, et al.. Effect of stresses in electronic properties of chromium disilicide [J]. Micro-electr Eng, 2002, 64(1-4): 219-223.
- 20 A V Krivosheeva, V L Shaposhnikov, V E Borisenko. Electronic structure of stressed CrSi₂[J]. Mater Sci Eng B, 2003, 101(1-3): 309-312.
- 21 M C Bost, J E Mahan. An investigation of the optical constants and band gap of chromium disilicide [J]. J Appl Phys, 1988, 63 (3): 839-844.
- 22 V Bellani, G Guizzetti, F Marabelli, *et al.*. Theory and experiment on the optical properties of CrSi₂[J]. Phys Rev B, 1992, 46(15): 9380-9389.
- 23 Fang Rongchuan. Solid State Spectroscopy [M]. Hefei: University of Science and Technology Press, 2003. 39-50. 方容川. 固体光谱学[M]. 合肥:中国科学技术大学出版, 2003. 5-50.